Development of Erythroid Progenitor Cells
نویسندگان
چکیده
Erythropoietin (EP), insulin-like growth factor I (IGF-I) and stem cell factor (SCF) each reduce apoptosis of human erythroid progenitor cells. To determine if these growth factors have additional roles in stimulating erythropoiesis, the proliferation, maturation, and survival of highly purified human erythroid colony-forming cells (ECFCs) were studied during the application of different combinations of these growth factors in a serum-free liquid culture. EP maintained cell viability and supported heme synthesis during erythroid maturation, with little increase in viable cell number or stimulation of DNA synthesis. The addition of SCF with EP resulted in a substantial increase in DNA synthesis, which was greater than that seen with the addition of EP and was associated with a large expansion in the number of ECFCs. Thus EP, by itself, produces little increase in cell proliferation, and expansion of the number of erythroid cells depends upon the presence of SCF with EP. The addition of IGF-I with EP led to enhanced heme synthesis and moderate cellular proliferation, but also greatly enhanced nuclear condensation and enucleation in the late erythroblasts. Thus EP, by itself, is not sufficient for complete end-terminal nuclear condensation/enucleation and the presence of IGF-I is necessary for this complete process. While EP greatly reduced apoptosis during 16 h of incubation at 370C, the addition of SCF and IGF-I with EP had little additional effect, but these additions enhanced DNA synthesis > 3.4-fold. Thus SCF may have an additional role in directly stimulating proliferation through a process that is distinct from apoptosis. Our observations indicate that EP prevents apoptosis and maintains erythroid cell viability and development. IGF-I enhances erythroid maturation and proliferation, but the proliferation of erythroid progenitors is mainly controlled by the addition of SCF with EP, independent of an effect on apoptosis. (J. Clin. Invest. 1994. 94:34-43.)
منابع مشابه
Roles for integrin very late activation antigen-4 in stroma-dependent erythropoiesis.
Adhesion molecules are required for development of hematopoietic stem and progenitor cells in the respective hematopoietic microenvironments. We previously showed that development of the erythroid progenitor cells is dependent on their direct adhesion to the stroma cells established from the erythropoietic organs. In this stroma-dependent erythropoiesis, we examined the role of adhesion molecul...
متن کاملSpecification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells
Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...
متن کاملDual actions of Meis1 inhibit erythroid progenitor development and sustain general hematopoietic cell proliferation.
Myeloid ecotropic viral integration site 1 (Meis1) forms a heterodimer with Pbx1 that augments Hox-dependent gene expression and is associated with leukemogenesis and HSC self-renewal. Here we identified 2 independent actions of Meis1 in hematopoietic development: one regulating cellular proliferation and the other involved in megakaryocyte lineage development. First, we found that endogenous M...
متن کاملMicroenvironment created by stromal cells is essential for a rapid expansion of erythroid cells in mouse fetal liver.
Mouse stromal cell lines (FLS lines), established from the livers of 13-day gestation mouse fetus, supported the proliferation and differentiation of the erythroid progenitor cells from mouse fetal livers and bone marrow in a semisolid medium in the presence of erythropoietin. A large erythroid colony of over 1000 benzidine-positive erythroid cells was developed from a single erythroid progenit...
متن کاملTranscription factor networks in erythroid cell and megakaryocyte development.
Erythroid cells and megakaryocytes are derived from a common precursor, the megakaryocyte-erythroid progenitor. Although these 2 closely related hematopoietic cell types share many transcription factors, there are several key differences in their regulatory networks that lead to differential gene expression downstream of the megakaryocyte-erythroid progenitor. With the advent of next-generation...
متن کاملA minimal cytoplasmic subdomain of the erythropoietin receptor mediates erythroid and megakaryocytic cell development.
Signals provided by the erythropoietin (Epo) receptor are essential for the development of red blood cells, and at least 15 distinct signaling factors are now known to assemble within activated Epo receptor complexes. Despite this intriguing complexity, recent investigations in cell lines and retrovirally transduced murine fetal liver cells suggest that most of these factors and signals may be ...
متن کامل